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Protein function prediction: towards integration
of similarity metrics
Serkan Erdin, Andreas Martin Lisewski and Olivier Lichtarge
Genomic centers discover increasingly many protein

sequences and structures, but not necessarily their full

biological functions. Thus, currently, less than one percent of

proteins have experimentally verified biochemical activities. To

fill this gap, function prediction algorithms apply metrics of

similarity between proteins on the premise that those

sufficiently alike in sequence, or structure, will perform identical

functions. Although high sensitivity is elusive, network analyses

that integrate these metrics together hold the promise of rapid

gains in function prediction specificity.
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Introduction
There is a large gap between the number of known

proteins and those that are characterized functionally.

Out of a few thousand ongoing high-throughput genome

projects, the nine hundred or so that are complete [1],

have collectively yielded over 13 million protein

sequences. A sliver of these, or 1%, has experimental

annotations [2]. Most others carry inferred annotations

(64%), and fully a third remain cryptic, being labeled

‘‘putative’’, ‘‘uncharacterized’’, ‘‘hypothetical’’ or ‘‘with

unknown function’’ (35%) in the UniProt database [3].

The same is true for protein structures solved by Struc-

tural Genomics (SG), a worldwide effort that aims to

inform function through structural knowledge. In

keeping with a selection bias against homologs of known

structures, 40% of the nearly 10,000 SG structures

solved thus far have unknown function in the Protein

Data Bank, and even after putative automated

annotations nearly 3000 structures remain listed as

unannotated in the PSI-Nature Structural Biology

Knowledgebase [4].
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These numbers likely underestimate the magnitude of

the problem since existing annotations are not necessarily

accurate. Most rely on homology, assuming that evolu-

tionarily proximity implies shared function. But even

with sequence identity of 70%, or greater, careful studies

showed that 10% of any pair of enzymes have different

substrates; and differences in the actual enzymatic reac-

tions are not uncommon near 50% sequence identity

[5,6]. Thus databases may carry misannotations that could

then propagate, and be amplified, via otherwise accurate

annotation methods [7]. Indeed, an analysis of 37 well-

characterized enzyme families suggests that electroni-

cally curated databases carry misannotations whereas,

reassuringly, the manually curated SwissProt database

is nearly free of them and is thus closer to a gold standard

[8��].

The reason for this discrepancy between human and

computer-generated functional knowledge is that many

aspects of protein evolution naturally confound both the

sensitivity and specificity of automated annotations First,

individual proteins are multifunctional. This is clear

when a protein carries multiple binding or catalytic sites,

or promiscuous ones (meaning they are non-specific). But

folding, cellular targeting, post-translational modifi-

cations, allosteric regulation and degradation are func-

tions in their own right; and their interplay with context is

seen in metalloproteins that bind distinct metal ions

depending on cellular location [9]. Second, evolutionary

relatedness, or the lack of it, can be deceiving. After gene

duplication, paralogs may develop entirely unrelated

functions, such as eye lens crystallins that originate from

enzymes [10]. Conversely, there are over a hundred

examples of enzymatic convergence in which unrelated

proteins converged to perform similar reactions [11].

Moreover, functional convergence is difficult to discern

even at the molecular level: a study of nine types of ligand

(AMP, ATP, FAD, FMN, glucose, heme, NAD, phos-

phate and steroid molecules) illustrates that each one can

binds into a variety of binding pockets with a wide range

of electrostatic or hydrophobic properties [12�]. And third,

the functional response to even single residue pertur-

bations may range from dramatic fold changes [13], to

switches in functional specificity [14] or catalytic function

[15], or to no changes in function despite variations in the

side chain character or positions of catalytic residues [16].

This complexity suggests that proteins should be viewed

as evolving in a functional landscape with a non-trivial

topology. Specifically, the relationship between changes
www.sciencedirect.com
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Figure 1
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Alternative relationships between protein similarity and protein function.

The x-axis represents the distance between two proteins, in terms of

sequence or structure, or some other observable feature. The y-axis is

the distance between the same proteins in terms of their biological

functions. Typically, annotation methods assume that the more similar

the proteins the more alike their function. This is shown as a simple

(linear) correlation in the red line. But these changes need not to be

smooth: the green line illustrates small protein variations that lead to

substantial change in molecular function, such as between paralogs. The

blue line illustrates an opposite example when distant proteins perform

closely related biochemical functions.
in proteins and changes in their functions has many forms

(Figure 1): it can be smooth and predictable (Figure 1, red

line), but it can also be abrupt (green line) or absent (blue

line). Thus in response to changes in context or in

sequence, the function can sometimes jump to distant

parts of the functional landscape rather than stay close by.

In that light, the problem of function annotation is two-

fold: to describe the functional landscape that is available

to proteins, and to correctly determine which parts of this

landscape a protein occupies given the pitfalls illustrated

in Figure 1. We briefly address the first point next, and

then focus the balance of the review on the second point.

Computer readable descriptions of protein
function
Nomenclatures that tally, classify and compare individual

protein functions have begun to describe part of this

functional landscape. The Enzyme Commission (EC)

functional classification is a hierarchy of four numbers that

describes catalytic reactions in successively finer detail.

Enzymes that have more EC numbers in common, starting

from level 1, that defines broad enzymatic classes, to level

4, that defines specific substrates, should ideally be increas-

ingly related mechanistically. But detailed comparisons

show enzymes with identical first-three digit EC numbers

may have significant differences in catalytic process [17].

EC numbers must therefore be interpreted with care.
www.sciencedirect.com
The Gene Ontology is a more general alternative (GO)

[18]. It has distinct terms for Molecular Function, such as

growth factor receptor binding; Biological Process, such as

cell proliferation, and Cellular Component, such as

nuclear membrane. Moreover, eighteen different evi-

dence codes specify the basis for each annotation, and

hence their reliability. For example, EXP, IEP, ISS, IC,

IEA mean, respectively, inferred from experiment,

expression pattern, sequence or structural similarity, or

by the curator, or via electronic annotation. This GO

framework creates child-parent hierarchical relationships

through directed acyclic graph.

Many other classification schemes exist. For example, the

Transporter Classification describes transport proteins

[19], and others apply to cellular pathways and processes

such as KEGG [20] and EcoCyc [21]. The latter classifies

Escherichia coli genes based on their association with

metabolic pathways, while MetaCyc is its generalized

version [22].

Sequence-based functional annotation
Given such classifications to codify the functional land-

scape, annotation methods then rely on a correlation

between functional and structural similarity metrics of

the type shown in Figure 1(red line). Many choices of

protein similarity metrics are possible, however, to assess

likeness.

The simplest protein similarity metrics exploit homology

of whole sequences. BLAST/PSI-BLAST [23] are routi-

nely used, and the top hit with a known function provides

the annotation. A better strategy is to gather GO terms

among all hits, and transfer those that recur with statisti-

cally significant frequency. Using a ‘‘Function Associ-

ation Matrix’’ to apply this strategy, PFP reached �100%

coverage and 60% accuracy in a benchmark set of non-

redundant 2000 sequences [24], with some improvements

with an iterative use of PSI-BLAST [25]. Specificity can

be raised by distinguishing between orthologs and para-

logs. A recent comparative phylogenetic analysis of yeast

Saccharomyces cerevisiae genes showed significant differ-

ences in functional inheritance between them [26]. SIF-

TER exploits these differences to transfer GO terms

based on Bayesian statistics of duplication and speciation

events [27]. This phylogenomic approach is slower, but

more accurate. Yet, as already mentioned, small sequence

changes can profoundly impact function: melamine dea-

minase and atrizine chlorohydrolase share 98% sequence

identity but differ in function [28].

Therefore a second type of similarity metric focuses on

local sequence motifs rather than on whole sequence

comparisons. These motifs consist of residues that

directly mediate function, and which therefore should

be the most specific for annotation. As a basis for these

searches, InterPro [29] assembles functional signatures of
Current Opinion in Structural Biology 2011, 21:180–188



182 Theory and Simulation

Figure 2
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Evolutionary Trace Annotation (ETA) of protein function. (a) ETA is composed of three steps. (1) The Evolutionary Trace [55] aligns homologous

sequences and ranks positions according to the correlation between evolutionary divergence and amino acid variations. (2) The protein structure is

labeled with these evolutionary importance rankings. (3) A heuristic selects clustered, surface exposed and evolutionarily important amino acids to

form a structural template (red spheres). (4) A library of proteins with known function is searched for matches (called hits) to this template. An SVM filter

discards the hits if they do not fall on top ranked ET residues (not depicted). (5–8) A reciprocal match is searched for and here shown to be found by

repeating steps 1–4 in the opposite direction. (b) ETA matches define a graph. Each protein chain is a node, and structural and evolutionary similarities

are the edges. Some nodes are known to carry a given function (blue), other nodes are known to not carry that function (white), and the functional

status of remaining nodes is unknown (?). The labels are then transferred among all nodes in the network based on the number of edges and their

strength, in a process analogous to diffusion. The result is a score for every enzymatic function at every node. Finally, these scores are normalized and

Current Opinion in Structural Biology 2011, 21:180–188 www.sciencedirect.com
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proteins gleaned from eleven databases. As motifs

become smaller, the chance of random similarities and

false positives rises. To recover specificity, EficaZ ident-

ifies functionally discriminating residues. These are

derived from Hidden Markov Models of alignments of

enzymes, PROSITE patterns and family-specific

sequence identity thresholds [30]. Fourth-level EC anno-

tations reach 92% specificity and 82% sensitivity in non-

trivial controls with mutual sequence identity that is

below 40%. Similarly, ConFunc has 24% greater predic-

tion specificity than BLAST, also in sequences with low

sequence identity [31]. It uses position specific scoring

matrices derived from discriminating residue profiles in

GO term-specific sub-alignments of PSI-BLAST hits.

Structure-based function annotation
A third type of protein similarity metric exploits three-

dimensional (3D) protein structures. One may either

directly align structures to each other [32], or more

generally find how they fit into broad classifications of

structures, such as SCOP and CATH [33,34], or special-

ized ones, such as The Structure Function Linkage

Database [35]. The fact that 70% of CATH fold types

are associated with just one function [36], or that GO

terms are more identical in the SCOP superfamilies than

different superfamilies with the same fold [37] justifies

these methods. Structural alignments are now faster with

little accuracy loss [38], and those methods that do not

explicitly construct the alignments can be especially fast

[39,40].

A further similarity metric focuses on local structural

features. The local geometry of clefts and pockets, or

their surface electrostatics, informs on comparisons of

active sites and ligand-binding sites at the molecular

level. For example, pevoSOAR [41] annotates enzymes

based on matching cavities and pockets with known

functional sites collected in the CASTp database [42].

SURFNET [43], and Consurf-HSSP database [44] also

focus on cleft comparison, while EF-site [45] and Multi-

Bind/MAPPIS check electrostatic properties and physico-

chemical properties of binding sites respectively [46].

Model structures can be used as well: FINDSITE threads

query sequences to find their putative binding sites and to

suggest potential ligands [47]. Its accuracy was 67% in

controls with less than 35% sequence similarity to any

target protein.

Template-based methods
A closely related fifth type of similarity metric is based on

3D templates, which narrow local structural searches even
compared (not depicted). The predicted functional label is the one with the

Performance comparison of ETA network diffusion versus BLAST on a test

annotations showed a consistent accuracy advantage of approximately 9% o

confirms the predicted carboxylesterase activity of a previously unannotated

(3h04 in the Protein Data Bank). ETA network diffusion predicted this enzyma

similar to that of a known carboxylesterase; the negative control, Bovine se

www.sciencedirect.com
further. These templates are composed of a few residues

that are directly associated with function and positioned

with respect to each other in a defined spatial geometry.

The Ser-His-Asp catalytic triad of serine proteases is a

case in point [48]. Its residues are not necessarily sequen-

tial and may therefore be very difficult to detect from

sequence analysis. Yet their 3D-templates could be geo-

metrically matched to other protein structures so as to

identify other proteases better than sequence homology

methods could [49]. The Catalytic Site Atlas is a resource

that provides 3D templates for over 53,000 protein chains,

each one based on experimentally verified small func-

tional motifs [50]. However, these sites often have three

residues or fewer, and hence do not include surrounding

residues that may also modulate catalysis. Moreover,

many proteins are not enzymes.

To follow this strategy, it is therefore important to also

derive the templates themselves. The Reverse Tem-

plates (RT) method [51] breaks down a query protein

structure into the tri-peptide segments and searches them

against the non-redundant protein structures. GASPS

generates templates based on their ability to distinguish

related structures from others [52]. A recent state-of-the-

art template-based method, FLORA constructs tem-

plates from the residues specific to functional sub-groups

in the functionally diverse CATH superfamilies and it

outperforms other similar methods in three-digit EC

annotation in an unbiased set of control enzymes [53].

Evolutionary Trace Annotation
In a complementary approach, 3D templates may also be

defined and then compared objectively by relying on

evolution. This requires no prior assumptions on func-

tional mechanisms and amino acids. Rather, in a series of

steps, key functional residues are extracted from phylo-

genomic comparisons of aligned sequences, and they are

mapped onto the protein structure. Next, templates are

then picked from the functional residues that cluster at

the surface. Their geometric matches to other structures

then define template ‘‘hits’’. Finally, various compu-

tational filters select among those hits the ones that are

least likely to arise by chance. In practice the Evolution-

ary Trace Annotation (ETA) server [54], depicted in

Figure 2a, uses the ranked lists of evolutionarily import-

ant residues produced by Evolutionary Trace (ET)

[55,56]. Top-ranked ET residues are good candidates

for 3D templates because they are known to generally

overlap functional sites and identify their determinants

[57], such that their targeted mutations efficiently

engineer proteins with selective separation of function
highest normalized weight (called z-score) that is also significant. (c)

set of structural genomics proteins. Diffusion of enzymatic function

ver BLAST across many coverage levels [80�]. (d) UV absorbance (y-axis)

protein from the medically relevant organism Staphylococcus aureus

tic function which was tested and confirmed in vitro. Specific activity was

rum albumin (BSA), had no activity.

Current Opinion in Structural Biology 2011, 21:180–188
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or rewired functional specificity [58]. Evolution is also

central to each of the three specificity filters. The first one

is a Support Vector Machine trained to reject template

hits that do not fall on residues that are themselves ranked

as being evolutionarily important by ET [59]. The second

imposes plurality, so that a function is passed to a protein

only if that function recurs more often than any other in all

of its hits [60]. And the third filter requires hit reciprocity,

so that if the template of protein A has a hit on protein B,

the reverse is also true: the template of protein B will hit

protein A [61]. With all of these filters applied together,

the positive predictive value (PPV) up to the third digit of

EC numbers rose to 92% in a large-scale control over more

than 1200 SG proteins. Sensitivity, on the order of 40%,

can be raised to 53% by using more accurate ET-based

templates [62]. Similar results are obtained for GO anno-

tations: 53% sensitivity and 94% PPV at the third GO

depth over 2300 protein, while 76% of the predictions

were still correct at the deepest available GO level [63�].

Metaservers
Since these different metrics focus on different protein

features, an expectation is that they would yield better

predictions when combined. For example, ProFunc is a

meta-server that combines fourteen different types of

computational annotations (5 sequence-based, 5 struc-

ture-based, 4 template-based), and which reaches 60%

coverage with 70% accuracy, in a control over 92 protein

structures of known function [49,64]. ProKnow [65] is

another meta-server that is knowledge-based and which

combines similarity metrics from fold and sequence

comparisons, from motifs and from interaction relation-

ships among proteins. In 1500 distinctly folded protein

controls, its coverage and accuracy were 93% and 89%,

respectively, at the first level of the GO classification,

decreasing to 44% accuracy at the ninth, deepest avail-

able level.

Networks
An alternate to meta-servers is to pool annotations into

network structures. Genes or gene products define the

nodes of such networks, and the associations between

them that suggest functional similarities are indicated

by edges. A key advantage is that any number of

similarity metrics can be represented at once simply

by adding new edges between the protein nodes, or

strengthening existing edges, regardless of whether they

arise from sequence, structure, or evolutionary data over

the whole or part of the protein. Moreover, these edges

can also describe functional associations from yeast-two-

hybrid; co-expression; conserved genomic neighbor-

hood; phylogenetic co-occurrence and literature co-

occurrence; for example, the STRING database [66��]
now covers nearly 30% of all protein sequences in

UniProt with such data. To benchmark prediction qual-

ity or to make novel predictions on protein function,

biological process or gene phenotype, one can then
Current Opinion in Structural Biology 2011, 21:180–188
apply the concepts of connectivity, centrality, modular-

ity, clustering or graph cuts and maximum flows on

graphs [67]. Network methods can be broadly ordered

into local and global approaches depending on whether

their calculated predictions require some or all nodes and

edges in the graph, respectively.

Local network methods consider nearest neighbors and

the functions of a node are predicted from its annotated

direct neighbors. This heuristic approach remains the

standard to measure prediction accuracy and coverage

since its predictive power is not easily surpassed and it

scales at most linearly with the total number of nodes in

the network [68]. For example, given reliable underlying

network information, local methods have been shown to

predict a spectrum of effects ranging from gene essenti-

ality to tissue-specific loss-of-function phenotypes in the

nematode Caenorhabditis elegans [69�]. However, local

network methods generally require additional consider-

ations to yield statistical confidence values [70], and non-

local alternatives are more accurate.

Some non-local methods can gather information from

larger neighborhoods. They apply the concept of network

modules, or motifs, which are groups of genes or proteins

with the same molecular function or taking part in the same

biological process. The detection of modules involves

clustering and statistical testing of significance against

random networks [67]. In yeast, where detailed and reliable

genome-wide interaction data are available, module detec-

tion identified both novel molecular complexes and

specific biological roles [71], such as highly significant gene

promoter motifs that regulate transcription [72]. However,

not all functionally coherent groups of proteins can be

represented through modules. For example, transmem-

brane receptors bind to many extra-cellular and intra-

cellular molecular partners, but they much less frequently

form complexes with other membrane proteins [73].

Hence, it is unlikely that protein interaction networks

can be completely decomposed into functional modules.

Fully global methods seek to optimize annotations by

finding the minimum of a quadratic polynomial, H, over

all nodes and edges. Here, H is a positive cost function the

minimum of which reflects the topology of the graph and

yields a distribution of numerical labels (discrete or

continuous, positive and negative) indicating functional

memberships. In the input, only the nodes with known

functions carry labels. In the output, after optimization,

most nodes carry some labels including those initially

unknown. Minimization of H is an optimization problem

equivalent to maximum a posteriori (MAP) estimates in

Bayesian networks [74], to stationary states in Markovian

random fields [75], or to minimum cost solutions in

graph-based semi-supervised learning [76]. This last

method, also referred to as network diffusion, is notable

for its improved accuracy and coverage over local methods
www.sciencedirect.com
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[77]. When the network edges are positive, it produces a

solution that grows linearly with network size [78],

enabling global analysis of very large networks — poten-

tially millions of protein nodes. Finally, it allows the

integration of heterogeneous data by optimizing the

relative weights of individual networks; for example,

those built from local evolutionary, global geometrical,

topological and sequence relationships lead, after

weighted integration, to an increase in sensitivity of

17% over the best single network [79�].

Most recently, in the context of Structural Genomics, this

machine learning technique improved the specificity and

coverage of function annotations. A network of protein

structures was generated from reciprocal 3D template hits

derived from the ETA method [80�] (Figure 2a). At the

start, labels indicated the enzymatic activity of known

proteins in the Protein Data Bank. Graph-based semi-

supervised learning was then applied to transfer known

functional labels of enzymatic activity to proteins whose

function was unknown and to assign a statistical confidence

score to all predictions (Figure 2b). By comparison to the

ETA method [54], this global analysis raised accuracy by

6% at 65% coverage (from 90% to 96% accuracy) at the

substrate-specific fourth EC level. It also increased

accuracy and coverage over standard BLAST annotation

by 10% (from 85% to 95% accuracy also at 65% coverage,

see Figure 2c). In other controls, it improved over other

structure-based methods, such as FLORA, reducing false

positives to raise accuracy rose from 60% to 90% (measured

at 97% sensitivity). Finally, as a direct additional control, a

new annotation of a carboxylesterase (EC 3.1.1.1), in a

vancomycin resistant strain of Staphylococcus aureus, was

tested experimentally and confirmed (Figure 2d).

Concluding remarks
The pace of discovery of protein sequences and structures

is accelerating, and with it the need to interpret their

biological meaning efficiently. Although diverse exper-

imental techniques inform on biological processes [81�]
and phenotype [69�], direct and high-throughput exper-

imental screen to simultaneously measure a wide array of

different biochemical activities remain unusual [82].

Although any assay is best when tuned to specific sub-

strate and reaction, optimal conditions will be different

for different proteins, and protein promiscuity and func-

tional multiplicity can lead to false positives and false

negatives. For these reasons, continued progress in auto-

mated annotation is imperative. This means increasing

the specificity and sensitivity of function predictions.

Network-based inferences of function are likely to be well-

suited for both tasks. Specificity should rise because any

type of functionally relevant associations between proteins

can be integrated together in a unified computational

framework [66��]. Global network analyses also efficiently

apply all of the network’s information to each node [67],
www.sciencedirect.com
and statistical significance can point to the most reliable

annotations [67,77,80�]. Indeed, specificity does rise as a

result of these integrative [79�] and global features of net-

works [80�].

One key hurdle for further increases in specificity is the

errors that may be contained in the primary data used to

encode the networks. Both individual link and the func-

tional labels they propagate may be inaccurate. It is

therefore critical to systematically control reference gold

standards [8��], and to objectively and systematically

control predictions through systematic experiments

[83]. A second hurdle is computational. The sheer num-

ber of intrinsic relationships between gene and protein

sequences poses a computational barrier even to today’s

most scalable network analysis methods. For example,

there are more than a hundred billion orthology relation-

ships between protein sequences in the current STRING

database, which covers around 2.5 million proteins across

630 organisms. Global network optimization on such a

scale remains a steep challenge. Finally, more involved

description of protein dissimilarities or functional anti-

correlations should eventually be taken into account.

This, however, leads to incompatibilities between func-

tional labels, network frustration, and multiple minima for

which efficient optimizations also remain a challenge.

Ultimately, the problem of raising sensitivity may prove

harder. There are clearly diverse evolutionary and mol-

ecular solutions to carrying out a given functions [11,12�].
Whenever we come across such a new solution, it is

unlikely that existing metric of similarity will discern

the conserved features that mediate the common function.

One approach to increase sensitivity, for example in the

context of 3D templates, is to reduce the number of

residues in the templates and so to increase their number

of hits. Another approach is to enlarge the repertoire of

functional markers, for example by generating multiple 3D

templates for each protein, which also leads to more hits. As

these and other more sensitive strategies are integrated

into one network, the hope would be that they complement

each other sufficiently that the network recovers specificity

and still preserves the gains in sensitivity.
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