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Abstract

The annotation of protein function has not kept pace with the exponential growth of raw sequence and
structure data. An emerging solution to this problem is to identify 3D motifs or templates in protein
structures that are necessary and sufficient determinants of function. Here, we demonstrate the recurrent
use of evolutionary trace information to construct such 3D templates for enzymes, search for them in
other structures, and distinguish true from spurious matches. Serine protease templates built from
evolutionarily important residues distinguish between proteases and other proteins nearly as well as the
classic Ser-His-Asp catalytic triad. In 53 enzymes spanning 33 distinct functions, an automated pipeline
identifies functionally related proteins with an average positive predictive power of 62%, including
correct matches to proteins with the same function but with low sequence identity (the average identity
for some templates is only 17%). Although these template building, searching, and match classification
strategies are not yet optimized, their sequential implementation demonstrates a functional annotation
pipeline which does not require experimental information, but only local molecular mimicry among
a small number of evolutionarily important residues.
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By August 2005, the NCBI Entrez Genome Project
contained 273 fully sequenced genomes yielding almost
1.7 million putative protein sequences in NCBI’s RefSeq
database. However, up to 40% of these genes still lacked

any annotation of biological function (Pruitt et al. 2005),
thus illustrating the importance of reliable methods to
identify protein function.

To address this problem, broad categories of computa-
tional methods for functional annotation have emerged
that rely on either sequence or structure, considered
whole or through motifs. Whole sequence methods can
fail when homologs develop unrelated functions, distinct
chemistries, or different functional sites as sequence
identity falls below 40% (Olmea and Valencia 1997;
Russell et al. 1998; Todd et al. 2001). Local sequence
motifs, however, cannot adequately capture functions
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distributed over nonadjacent stretches of primary struc-
ture. These limitations motivated the extension of the
concept of functional motifs from sequence to structure
(Wallace et al. 1996, 1997; Russell 1998; Kleywegt 1999;
Bartlett et al. 2002; Barker and Thornton 2003; Stark
et al. 2003; Ivanisenko et al. 2004, 2005; Porter et al.
2004; Shulman-Peleg et al. 2004; Ausiello et al. 2005;
Torrance et al. 2005).

The rationale for structural motifs (‘‘3D templates’’) is
that, typically, just a few key residues directly mediate
catalysis or binding. These same residues in the same
conformation should therefore be reasonably expected to
carry out the same function even in a different fold, unless
long-range effects impact their biophysical behavior.

Many methods aim to derive 3D templates and match
them to protein structures. Some map sequence motifs
onto structures (Kasuya and Thornton 1999; Liang et al.
2003); others compare enzymes with known functional
sites against a structural database (Fischer et al. 1994) or
against each other (Wallace et al. 1997; de Rinaldis et al.
1998; Laskowski et al. 2005; Torrance et al. 2005).
However, fundamental difficulties remain. First, 3D
templates that rely on experimental data are limited by
the availability of such information. Second, while the
search for 3D matches to small templates (3–4 residues)
is not computationally expensive, this quickly changes for
larger motifs that include amino acid substitutions when
searched against the full Protein Data Bank (PDB)
(Berman et al. 2000). Third, although sequence methods
such as BLAST (Altschul et al. 1990) and PSI-BLAST
(Altschul et al. 1997) can confidently claim to find
sequence homologs and suggest—but do not prove—
functional similarity between proteins, it is not yet clear
what degree of functional similarity can be inferred from
a structural match.

With these issues in mind, we present an evolution-
directed series of algorithms, which, in the absence of
experimental data, aim to identify relevant 3D templates,
to guide an efficient search for molecular mimicry in
other protein structures, and finally to isolate from among
all matches a subset that is highly enriched in proteins
that perform the same function. Together these represent
the first steps toward an automated functional annotation
pipeline for proteins that can complement experimentally
driven annotation efforts.

To measure the evolutionary importance of each pro-
tein residue, we use the evolutionary trace (ET) method
(Lichtarge et al. 1996a). ET ranks residue importance by
correlating amino acid variations in a multiple sequence
alignment with evolutionary divergences in a phylogenetic
tree. The quality of the analysis is measured by the extent
to which top-ranked (trace) residues cluster in the struc-
ture (Madabushi et al. 2002; Mihalek et al. 2003). Remark-
ably, these clusters match functional sites (Madabushi et al.

2002; Yao et al. 2003) precisely enough to guide rational
protein engineering (Lichtarge et al. 1996b, 1997, 2003;
Landgraf et al. 1999; Pritchard and Dufton 1999; Innis et al.
2000; Pascual et al. 2000; Sowa et al. 2000, 2001; Imanishi
et al. 2002; Madabushi et al. 2004; Raviscioni et al. 2005).
These data suggest that top-ranked trace residues represent
the key determinants of protein function. It is therefore
logical to use ET ranks to design 3D templates, to prioritize
matching of residues by their importance, and then again to
interpret their matches.

Results

The key steps of the pipeline (see Materials and Methods)
are the following: the identification of evolutionarily
important residues in the protein of interest (the query);
the selection of some of these residues to construct a
3D template; the search in other structures (targets) for
matches based on residue type and geometry (Chen et al.
2005, 2006); the assessment of the significance of a match
based on its least-root-mean-square deviation (LRMSD)
from the template; and, finally, a selection of the most
biologically relevant matches based on the evolutionary
importance of the matched target residues.

An underlying hypothesis is that templates built using
ET rank information can be useful in cases where the
functional site of a protein has not been determined by
experimental methods. Accordingly, we start with a com-
parison in serine proteases of a 3D template (positive
control) composed of the well-known Ser195-His57-
Asp102 ‘‘catalytic triad’’ (Wallace et al. 1996)—the gold
standard for proteolytic activity—with two neighboring
but nonoverlapping templates: one composed of highly
ranked residues (the test template) and the other of poorly
ranked residues (the negative control). Figure 1 shows the
distribution of matches of these templates against the
PDB, with vertical lines marking the points at which
p-value ¼ 1% (solid green) and 5% (dashed purple).
Matches to the catalytic triad template shown in Figure
1A (geometric positions for the template are obtained
from bovine chemotrypsin, PDB code 1acb) exhibit a bi-
modal distribution in which the left LRMSD peak is
smaller but rich in proteases (312 true positives shown as
red bars) and the right LRMSD peak is larger but contains
mostly functionally unrelated proteins (blue bars). The
separation between the two modes shows that LRMSD
from the template acts as a good discriminator of function
(Wallace et al. 1996).

Remarkably, Figure 1B shows that a template of non-
catalytic but highly ranked neighboring residues separates
these two peaks nearly as well. These residues were
chosen because they are near the catalytic triad and are
ranked within the top 5%, i.e., among the 12 most
important residues in this 245-residue protein. Unlike
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the triad, however, this ‘‘noncatalytic quartet’’ contains
fold-specific residues: Cys42 and Cys58 form a disulfide
bond, Asp194 is involved in a salt bridge, and Ser214 is
implicated in ligand binding. As a result, it does not find
matches to proteases with different folds, although it is
able to find matches to proteins with less than 30%
sequence identity. In comparison, the negative control
template of poorly ranked neighboring residues shown in
Figure 1C cannot distinguish at all between proteases and
other proteins. This suggests that structural templates
built from evolutionarily important residues will be use-
ful, particularly when experimental data on functional
residues is not available.

To confirm this hypothesis, we systematically selected
high-ranking residues in a test set of 53 enzymes
spanning 36 folds and 33 distinct functions and searched
the PDB for matches to each template for which the
LRMSD has a p-value # 1%. We examine only enzymes
because the enzyme nomenclature provides an easy and
reliable way to define each protein’s exact function (see

Materials and Methods). Figure 2A displays the distribu-
tion of these 1% significant matches over all 53 proteins
as a function of LRMSD. As with the match distribution
of the ‘‘catalytic triad’’ and the ‘‘noncatalytic quartet’’
above, true positive matches (red) generally have lower
LRMSDs, suggesting that, as before, ET rank allows us to
build discriminating templates. Also as before, matches
frequently occur to proteins with the same function but
low sequence identity to the source (the average identity
for some templates is only 17%). However, unlike the
previous examples, there are many false positives (blue)
even at the 1% p-value threshold. Furthermore, the true
and false hits are not well separated in the LRMSD
dimension, which suggests that there is no universal
LRMSD threshold to separate true from false geometric
matches.

In order to better separate true and false geometric
matches we focus next on the evolutionary importance of
the matched residues. The hypothesis is that a spurious
match is less likely to occur at evolutionarily important

Figure 1. Distribution of matches for serine protease motifs: (A) catalytic triad, (B) noncatalytic quartet, (C) negative control, (D) surface trace cluster. The

vertical lines represent the points at which the p-value ¼ 1% (solid green) and 5% (dashed purple). Structural template representations created using

PyMOL (DeLano 2002).
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residues than a true match. Indeed, Figure 2B demon-
strates the strikingly different evolutionary importance of
matched sites (the average ET rank of the matched
residues) between functionally related (red) and unrelated
(blue) proteins. Thus, consideration of the evolutionary
importance in the target protein should let us separate true
from random matches and thereby improve the positive
predictive power of our templates.

We formalized and tested this observation with a sup-
port vector machine (SVM) trained to classify matches as
true or false using the average ET rank of the target
residues and/or LRMSD. Table 1 shows that an SVM
based only on ET rank identifies 554 of 570 true positives
(97% sensitivity) and 4959 out of 5450 true negatives
(91% specificity). Its overall accuracy is 92% and its
positive and negative predictive powers are 53% and

99%, respectively. In contrast, an SVM that uses only the
LRMSD feature has a reduced accuracy of 85% and
positive predictive power of 37%. An SVM that uses both
ET rank and LRMSD yields the best performance, with
94% accuracy and 61% positive predictive power. Thus,
most of the discriminatory power of this classifier comes
from ET rank, with some complementary information
arising from LRMSD.

Since we ultimately wish to predict protein function,
we must test the classifier on proteins it has not been
trained on. This was done through leave-one-out cross-
validation experiments. For each of the 33 enzyme classes
in the test set, we trained an SVM on the other 32 classes,
and then tested performance on the left-out class. Table 1
shows that, overall, performance changes by less than 1%,
comparing all versus average cross-validation results for

Figure 2. Distribution of matches for 53 enzymes in a single dimension, LRMSD (A), and two dimensions, LRMSD and evolutionary

importance (B).
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each of the metrics used. While the standard deviation for
most of the metrics is on the order of 1%–10%, it reaches
as high as 39% for positive predictive power. These
results indicate that, while template performance is not
uniform across all enzyme classes, this classifier is not
highly dependent on the proteins in this data set and,
therefore, should work for other proteins as well.

We can now revisit the serine protease example using
the annotation pipeline from beginning to end. The five-
residue template chosen by this automated method par-
tially overlaps the catalytic triad (Ser195) and the test
template (Cys42, Cys58, and Ser214), since these resi-
dues are highly ranked by ET. The distribution of
matches, as before, is shown in Figure 1D. Compared
with the catalytic triad, the positive and negative pre-
dictive powers both decrease by only 1%, yielding
a positive and negative predictive power of 93%. The
similarity of these numbers is remarkable because no
experimental data about the active site was used to build
the new template except for that inferred from evolution
and structure. This example suggests that this approach
will be useful in enzymes (and nonenzymes) whose
functional mechanisms are unclear.

Discussion

We linked algorithms that exploit evolutionary informa-
tion in different ways toward the creation of an automated
functional annotation pipeline. First, 3D templates are
built from residues that are top-ranked by ET, cluster in
the protein structure, and are solvent-accessible. This

choice follows from past studies that consistently show
that top-ranked trace residues are key functional deter-
minants. Indeed, in serine proteases, several templates
built from top-ranked residues can distinguish serine
proteases from other proteins nearly as well as the
catalytic triad itself.

Second, the structural matching algorithm exploits ET
rank to prioritize its search. Rather than perform a geo-
metric search for the entire template in a single step
(which would be very computationally expensive due to
the amino acid labels), MA (match augmentation) per-
forms a fast search for the three most important trace
residues (the ‘‘seed’’) and then iteratively expands
matches to template residues of lesser rank. This method
is fast enough to search the entire PDB and generate
a nonparametric estimate of each p-value for any
LRMSD.

At that point in the pipeline, however, many false
matches are found. Even at a 1% significance LRMSD
threshold the average positive predictive power of the 53
3D templates is only 14%, and indeed Figure 2A,B
displays more false matches than true ones. This may
reflect template limitations such as the choice of residues;
the choice of points for geometric representation of those
residues (C-a atoms); the choice of size (five residues);
and, unlike most other template search algorithms, the
allowance for amino acid substitutions as they occur in
the query’s multiple sequence alignment. We note that
this finding of many functionally unrelated geometric
matches is in keeping with other studies (Laskowski et al.
2005; Torrance et al. 2005).

Table 1. Performance of the SVM classifier in distinguishing between true and false matches for the attributes ET + LRMSD,
LRMSD alone, and ET alone

Classification (53 proteins)

3D matches

ET + LRMSD LRMSD ET

Positive Negative Positive Negative Positive Negative

Same EC 570 553 17 515 55 554 16

Different EC 5450 350 5100 874 4576 491 4959

Total 6020 903 5117 1389 4631 1045 4975

SVM performance

ET + LRMSD LRMSD ET

Performance metric All Cross-validated All All

Accuracy 0.94 0.94 6 0.09 0.85 0.92

Sensitivity 0.97 0.96 6 0.10 0.90 0.97

Specificity 0.94 0.94 6 0.09 0.84 0.91

Positive predictive power 0.61 0.62 6 0.39 0.37 0.53

Negative predictive power 1.00 1.00 6 0.01 0.99 1.00

Leave-one-out cross-validation is done for each enzyme class in the data set for ET + LRMSD.
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For this reason, additional separation of the biologi-
cally relevant matches is imperative. This is accom-
plished, again, through evolutionary importance—but
this time in the matches themselves. Used in this novel
way, ET rank proves a powerful and robust discriminator
that separates true from false geometric matches with
92% accuracy alone and 94% with LRMSD added. The
average positive predictive power of all templates after
using this classifier is 63%—a 4.5-fold improvement
from the 14% seen without its use.

Future improvements may arise from better template
design, from the inclusion of biophysical features in the
SVM classifier, and from larger scale studies with broader
scope (including nonenzymes). For now, these results
show that the recurrent use of evolutionary information in
the form of ET rank is a novel and useful approach for the
functional annotation of protein structures based on local
molecular mimicry among a small number of evolution-
arily important residues.

Materials and methods

Test set

The test set consists of 53 proteins with 36 folds and 33 unique
functions. These proteins were chosen from the PDB-SELECT-
25 (Hobohm and Sander 1994) and thus each has less than 25%
sequence identity to all the others, including those with the same
function. A complete description is available in Supplemental
Materials.

Template creation

ET analyses were performed using an automated (Yao et al.
2003), real-valued (Mihalek et al. 2004) version of the ET
algorithm (Lichtarge et al. 1996a). For each protein, template
residues were chosen as the five top-ranked residues for which
the largest trace cluster contained at least 10 surface residues,
defined by DSSP solvent-accessibility values $2 (Kabsch and
Sander 1983). The five top-ranked surface residues in that
cluster were chosen to make the 3D template, representing each
by the geometric coordinates of its C-a atom and labeled by ET
rank and allowed amino acid substitutions (those appearing at
least twice in the corresponding column of the multiple
sequence alignment used for ET).

Matches

The match augmentation (MA) algorithm is described elsewhere
(Chen et al. 2005, 2006). In brief, MA matches a query template
to a target structure in two stages: seed matching identifies
several low LRMSD matches for the template’s three best
ranked residues; augmentation then iteratively adds template
residues in order of their ET rank. The output is the lowest
LRMSD match, or none if all LRMSDs exceed 4 Å. MA can
match a typical template to the entire PDB in ;40 min on
a single processor. We then compute the statistical significance
(p-value) of a match using a nonparametric density estimate of
the distribution of match LRMSDs to all protein chains in the
PDB (Chen et al. 2005, 2006).

For this study, matches were searched against 13,600 chains
from the PDB. This representative subset is redundant at the
protein level but includes only a single chain in cases where
multiple structures are available due to crystallographic sym-
metry. Mutants, ionically perturbed structures, and small peptide
fragments were manually removed, although structures bound to
inhibitors were retained.

Evaluation of matches

Throughout the paper, enzyme nomenclature (EC) (NC-IUBMB
1992) annotations are those reported in the PDB. A true match
means exact agreement of all four digits of the hierarchical EC
number. In all, 5200 proteins (38%) have full, unambiguous EC
annotation, while 7900 (58%) have none, although this number
may include some unannotated enzymes. Only 500 proteins
(<4%) have partial or ambiguous EC annotation (such as large
proteins performing multiple functions). As there were only 248
matches to these proteins (<2%), these were discarded.

Machine learning

We traced every matched protein and averaged the percentile ET
rank of its matched residues. This average ET rank, the LRMSD
of a match, or both were used to train either a 1- or 2-
dimensional support vector machine (SVM) using the Spider
package for MATLAB (see http://www.kyb.tuebingen.mpg.de/
bs/people/spider). Default parameters were used with a linear
kernel and a balanced ridge calculated as the difference between
the proportions of the two classes.

Electronic supplemental material

A description of proteins in the dataset is available at http://
mammoth.bcm.tmc.edu/motifs_prosci/.
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