1 Introduction

From the original Protein Data Bank entry (PDB id 1a9b):

Title: Decamer-like conformation of a nano-peptide bound to hla-b3501 due to nonstandard positioning of the c-terminus

Compound: Mol id: 1; molecule: hla class i histocompatibility antigen, b-35 b*3501 (alpha chain); chain: a; d; engineered: yes; mol id: 2; molecule: beta-2-microglobulin; chain: b; e; engineered: yes; mol id: 3; molecule: peptide lpplditpy; chain: c; f; engineered: yes; other details: peptide from ebna3c-protein from ebv

Organism, scientific name: Homo Sapiens;

1a9b contains unique chains 1a9bA (277 residues) and 1a9bE (100 residues) 1a9bD is a homologue of chain 1a9bA. 1a9bB is a homologue of chain 1a9bE. Chains 1a9bC and 1a9bF are too short to permit statistically significant analysis, and were treated as a peptide ligands.

2 Chain 1a9bA

2.1 Q546I9 overview

2.2 Multiple sequence alignment for 1a9bA

2.3 Residue ranking in 1a9bA

2.4 Top ranking residues in 1a9bA and their position on the structure

2.4.1 Clustering of residues at 73% coverage.

3 Chain 1a9bE

3.1 Q5R832 overview

3.2 Multiple sequence alignment for 1a9bE

3.3 Residue ranking in 1a9bE

3.4 Top ranking residues in 1a9bE and their position on the structure

3.4.1 Clustering of residues at 25% coverage.

3.4.2 Overlap with known functional surfaces at 25% coverage.

3.4.3 Possible novel functional surfaces at 25% coverage.

4 Notes on using trace results

4.1 Coverage

4.2 Known substitutions

4.3 Surface

4.4 Number of contacts

4.5 Annotation

4.6 Mutation suggestions

5 Appendix

5.1 File formats

5.2 Color schemes used

5.3 Credits

5.3.1 Alistat

5.3.2 CE

5.3.3 DSSP

5.3.4 HSSP

5.3.5 LaTeX

5.3.6 Muscle

5.3.7 Pymol

5.4 Note about ET Viewer

5.5 Citing this work

5.6 About report maker

5.7 Attachments
2.2 Multiple sequence alignment for 1a9bA

For the chain 1a9bA, the alignment 1a9bA.msf (attached) with 51 sequences was used. The alignment was assembled through combination of BLAST searching on the UniProt database and alignment using Muscle program. It can be found in the attachment to this report, under the name of 1a9bA.msf. Its statistics, from the alistat program are the following:

- Format: MSF
- Number of sequences: 51
- Total number of residues: 14105
- Smallest: 273
- Largest: 277
- Average length: 276.6
- Alignment length: 277
- Average identity: 92%
- Most related pair: 99%
- Most unrelated pair: 86%
- Most distant seq: 96%

Furthermore, 72% of residues show as conserved in this alignment. The alignment consists of 98% eukaryotic (98% vertebrata) sequences. (Descriptions of some sequences were not readily available.) The file containing the sequence descriptions can be found in the attachment, under the name 1a9bA.descr.

2.3 Residue ranking in 1a9bA

The 1a9bA sequence is shown in Figs. 1–2, with each residue colored according to its estimated importance. The full listing of residues in 1a9bA can be found in the file called 1a9bA.ranks, sorted in the attachment.

2.4 Top ranking residues in 1a9bA and their position on the structure

In the following we consider residues ranking among top 73% of residues in the protein (the closest this analysis allows us to get to 25%). Figure 3 shows residues in 1a9bA colored by their importance: bright red and yellow indicate more conserved/important residues (see Appendix for the coloring scheme). A Pymol script for producing this figure can be found in the attachment.

Fig. 3. Residues in 1a9bA, colored by their relative importance. Clockwise: front, back, top and bottom views.

2.4.1 Clustering of residues at 73% coverage. Fig. 4 shows the top 73% of all residues, this time colored according to clusters they belong to. The clusters in Fig.4 are composed of the residues listed in Table 1.

<table>
<thead>
<tr>
<th>cluster color</th>
<th>size</th>
<th>member residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>201</td>
<td>2,3,4,5,7,8,10,13,14,15,16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17,18,20,22,25,26,27,28,29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30,31,33,34,36,37,38,39,40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>43,44,47,48,50,51,53,54,55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>56,57,58,59,60,61,64,68,72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75,78,84,85,86,87,88,89,90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>91,92,93,96,98,100,101,102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>104,105,106,107,108,110,111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>112,115,117,118,119,120,122</td>
</tr>
<tr>
<td></td>
<td></td>
<td>123,124,125,126,127,129,130</td>
</tr>
<tr>
<td></td>
<td></td>
<td>132,133,134,135,136,137,139</td>
</tr>
<tr>
<td></td>
<td></td>
<td>140,141,144,146,148,149,150</td>
</tr>
</tbody>
</table>

continued in next column
Fig. 4. Residues in 1a9bA, colored according to the cluster they belong to: red, followed by blue and yellow are the largest clusters (see Appendix for the coloring scheme). Clockwise: front, back, top and bottom views. The corresponding Pymol script is attached.

Table 1. continued

<table>
<thead>
<tr>
<th>cluster</th>
<th>size</th>
<th>member residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td></td>
<td></td>
</tr>
<tr>
<td>153,154,155,157,159,160,161</td>
<td>164,166,168,169,170,172,173</td>
<td>174,175,176,179,181,182,185</td>
</tr>
<tr>
<td>186,187,188,189,190,191,192</td>
<td>193,195,196,197,198,200,201</td>
<td>202,203,204,205,206,207,208</td>
</tr>
<tr>
<td>209,210,211,212,213,214,215</td>
<td>216,217,219,220,221,222,223</td>
<td>224,225,226,227,228,229,230</td>
</tr>
<tr>
<td>256,257,258,259,260,261,262</td>
<td>263,264,265,266,267,269,270</td>
<td>271,272,273,274</td>
</tr>
</tbody>
</table>

3 CHAIN 1A9BE

3.1 Q5R832 overview

From SwissProt, id Q5R832, 100% identical to 1a9bE:

Description: Hypothetical protein DKFZp468O042.

Organism, scientific name: Pongo pygmaeus (Orangutan).

Taxonomy: Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Catarrhini; Hominidae; Pongo.

Function: Beta-2-microglobulin is the beta-chain of major histocompatibility complex class I molecules (By similarity).

Subcellular location: Secreted (By similarity).

3.2 Multiple sequence alignment for 1a9bE

For the chain 1a9bE, the alignment 1a9bE.msf (attached) with 40 sequences was used. The alignment was assembled through combination of BLAST searching on the UniProt database and alignment using Muscle program. It can be found in the attachment to this report, under the name of 1a9bE.msf. Its statistics, from the `alistat` program are the following:

- **Format:** MSF
- **Number of sequences:** 40
- **Total number of residues:** 3928
- **Smallest:** 88
- **Largest:** 100
- **Average length:** 98.2
- **Alignment length:** 100
- **Average identity:** 50%
- **Most related pair:** 99%
- **Most unrelated pair:** 23%
- **Most distant seq:** 55%

Furthermore, 9% of residues show as conserved in this alignment. The alignment consists of 97% eukaryotic (97% vertebrata) sequences. (Descriptions of some sequences were not readily available.) The file containing the sequence descriptions can be found in the attachment, under the name 1a9bE.descr.

3.3 Residue ranking in 1a9bE

The 1a9bE sequence is shown in Fig. 5, with each residue colored according to its estimated importance. The full listing of residues in 1a9bE can be found in the file called 1a9bE.ranks in the attachment.

3.4 Top ranking residues in 1a9bE and their position on the structure

In the following we consider residues ranking among top 25% of residues in the protein. Figure 6 shows residues in 1a9bE colored by their importance: bright red and yellow indicate more conserved/important residues (see Appendix for the coloring scheme). A Pymol script for producing this figure can be found in the attachment.

3.4.1 Clustering of residues at 25% coverage.

Fig. 7 shows the top 25% of all residues, this time colored according to clusters they belong to. The clusters in Fig. 7 are composed of the residues listed in Table 2.
Table 2. Clusters of top ranking residues in 1a9bE.

<table>
<thead>
<tr>
<th>cluster color</th>
<th>size</th>
<th>member residues</th>
</tr>
</thead>
<tbody>
<tr>
<td>red</td>
<td>21</td>
<td>6,10,11,24,26,28,29,31,32,33,36,40,53,55,61,63,66,81,83,85,96</td>
</tr>
<tr>
<td>blue</td>
<td>2</td>
<td>43,44</td>
</tr>
</tbody>
</table>

3.4.2 Overlap with known functional surfaces at 25% coverage. The name of the ligand is composed of the source PDB identifier and the heteroatom name used in that file.

Interface with 1a9bD. Table 3 lists the top 25% of residues at the interface with 1a9bD. The following table (Table 4) suggests possible disruptive replacements for these residues (see Section 4.6).

Table 3.

<table>
<thead>
<tr>
<th>res</th>
<th>type</th>
<th>subst's</th>
<th>cvg</th>
<th>noc/ bb</th>
<th>dist</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>P</td>
<td>P(100)</td>
<td>0.09</td>
<td>4/2</td>
<td>3.77</td>
</tr>
<tr>
<td>61</td>
<td>W</td>
<td>W(100)</td>
<td>0.09</td>
<td>128/9</td>
<td>2.98</td>
</tr>
<tr>
<td>32</td>
<td>H</td>
<td>H(75)</td>
<td>0.13</td>
<td>30/0</td>
<td>2.77</td>
</tr>
<tr>
<td>55</td>
<td>L</td>
<td>L(90)</td>
<td>0.15</td>
<td>8/5</td>
<td>4.05</td>
</tr>
<tr>
<td>66</td>
<td>L</td>
<td>L(72)</td>
<td>0.16</td>
<td>12/0</td>
<td>3.74</td>
</tr>
<tr>
<td>11</td>
<td>Y</td>
<td>Y(82)</td>
<td>0.19</td>
<td>78/1</td>
<td>2.67</td>
</tr>
<tr>
<td>29</td>
<td>S</td>
<td>S(77)</td>
<td>0.22</td>
<td>6/0</td>
<td>2.93</td>
</tr>
<tr>
<td>63</td>
<td>F</td>
<td>F(82)</td>
<td>0.23</td>
<td>25/0</td>
<td>3.44</td>
</tr>
</tbody>
</table>

Table 4.

<table>
<thead>
<tr>
<th>res</th>
<th>type</th>
<th>disruptive mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>P</td>
<td>(YR) (TH) (SKECG) (FQWD)</td>
</tr>
<tr>
<td>61</td>
<td>W</td>
<td>(KE) (TQD) (SNCRG) (M)</td>
</tr>
<tr>
<td>32</td>
<td>H</td>
<td>(E) (QM) (KD) (TNVLAPI)</td>
</tr>
<tr>
<td>55</td>
<td>L</td>
<td>(YR) (H) (TRE) (SQCDG)</td>
</tr>
<tr>
<td>66</td>
<td>L</td>
<td>(R) (YH) (K) (E)</td>
</tr>
<tr>
<td>11</td>
<td>Y</td>
<td>(K) (QM) (R) (NELPI)</td>
</tr>
<tr>
<td>29</td>
<td>S</td>
<td>(R) (K) (H) (FW)</td>
</tr>
<tr>
<td>63</td>
<td>F</td>
<td>(K) (E) (Q) (D)</td>
</tr>
</tbody>
</table>

Fig. 6. Residues in 1a9bE, colored by their relative importance. Clockwise: front, back, top and bottom views.

Fig. 7. Residues in 1a9bE, colored according to the cluster they belong to: red, followed by blue and yellow are the largest clusters (see Appendix for the coloring scheme). Clockwise: front, back, top and bottom views. The corresponding Pymol script is attached.
Table 4. List of disruptive mutations for the top 25% of residues in 1a9bE, that are at the interface with 1a9bD.

<table>
<thead>
<tr>
<th>res</th>
<th>type</th>
<th>disruptive mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>P</td>
<td>P (100)</td>
</tr>
<tr>
<td>33</td>
<td>P</td>
<td>P (100)</td>
</tr>
<tr>
<td>61</td>
<td>W</td>
<td>W (100)</td>
</tr>
<tr>
<td>85</td>
<td>H</td>
<td>H (100)</td>
</tr>
<tr>
<td>10</td>
<td>V</td>
<td>V (97) I (2)</td>
</tr>
<tr>
<td>32</td>
<td>H</td>
<td>H (75) Y (25)</td>
</tr>
<tr>
<td>55</td>
<td>L</td>
<td>L (90) V (10)</td>
</tr>
<tr>
<td>66</td>
<td>L</td>
<td>L (72) T (27)</td>
</tr>
<tr>
<td>53</td>
<td>S</td>
<td>S (52) T (47)</td>
</tr>
<tr>
<td>36</td>
<td>I</td>
<td>I (97) V (2)</td>
</tr>
<tr>
<td>11</td>
<td>Y</td>
<td>Y (82) S (17)</td>
</tr>
<tr>
<td>96</td>
<td>W</td>
<td>W (94) L (2)</td>
</tr>
<tr>
<td>29</td>
<td>S</td>
<td>S (77) T (20) M (2)</td>
</tr>
<tr>
<td>63</td>
<td>F</td>
<td>F (82) Y (17)</td>
</tr>
</tbody>
</table>

The residues belonging to this surface “patch” are listed in Table 5, while Table 6 suggests possible disruptive replacements for these residues (see Section 4.6).

Table 5. Residues forming surface “patch” in 1a9bE.

<table>
<thead>
<tr>
<th>res</th>
<th>type</th>
<th>disruptive mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>P</td>
<td>(YR) (TH) (SKECG) (FQMD)</td>
</tr>
<tr>
<td>33</td>
<td>P</td>
<td>(YR) (TH) (SKECG) (FQMD)</td>
</tr>
<tr>
<td>61</td>
<td>W</td>
<td>(KE) (TQD) (SNCRG) (M)</td>
</tr>
<tr>
<td>85</td>
<td>H</td>
<td>(E) (TQMD) (SNKVCAPIG) (YR)</td>
</tr>
<tr>
<td>10</td>
<td>V</td>
<td>(YR) (KE) (H) (QD)</td>
</tr>
<tr>
<td>32</td>
<td>H</td>
<td>(E) (QM) (KD) (TNVLAPI)</td>
</tr>
<tr>
<td>55</td>
<td>L</td>
<td>(YR) (H) (TKE) (SQCDG)</td>
</tr>
<tr>
<td>66</td>
<td>L</td>
<td>(R) (YH) (K) (E)</td>
</tr>
<tr>
<td>53</td>
<td>S</td>
<td>(KR) (FQMH) (NELPI) (Y)</td>
</tr>
<tr>
<td>36</td>
<td>I</td>
<td>(YR) (H) (TKE) (SQCDG)</td>
</tr>
<tr>
<td>11</td>
<td>Y</td>
<td>(K) (QM) (R) (NELPI)</td>
</tr>
<tr>
<td>96</td>
<td>W</td>
<td>(KE) (T) (QD) (CG)</td>
</tr>
<tr>
<td>29</td>
<td>S</td>
<td>(R) (K) (H) (FW)</td>
</tr>
<tr>
<td>63</td>
<td>F</td>
<td>(K) (E) (Q) (D)</td>
</tr>
</tbody>
</table>

Table 6. Disruptive mutations for the surface patch in 1a9bE.

3.4.3 Possible novel functional surfaces at 25% coverage. One group of residues is conserved on the 1a9bE surface, away from (or substantially larger than) other functional sites and interfaces recognizable in PDB entry 1a9b. It is shown in Fig. 9. The right panel shows (in blue) the rest of the larger cluster this surface belongs to.

Figure 8. Residues in 1a9bE, at the interface with 1a9bD, colored by their relative importance. 1a9bD is shown in backbone representation (See Appendix for the coloring scheme for the protein chain 1a9bE.)

Figure 8 shows residues in 1a9bE colored by their importance, at the interface with 1a9bD.

3.4.3 Possible novel functional surfaces at 25% coverage. One group of residues is conserved on the 1a9bE surface, away from (or substantially larger than) other functional sites and interfaces recognizable in PDB entry 1a9b. It is shown in Fig. 9. The right panel shows (in blue) the rest of the larger cluster this surface belongs to.

Figure 9. A possible active surface on the chain 1a9bE. The larger cluster it belongs to is shown in blue.

4 NOTES ON USING TRACE RESULTS

4.1 Coverage

Trace results are commonly expressed in terms of coverage: the residue is important if its “coverage” is small - that is if it belongs to some small top percentage of residues [100% is all of the residues in a chain], according to trace. The ET results are presented in the form of a table, usually limited to top 25% percent of residues (or to some nearby percentage), sorted by the strength of the presumed evolutionary pressure. (I.e., the smaller the coverage, the stronger the pressure on the residue.) Starting from the top of that list, mutating a couple of residues should affect the protein somehow, with the exact effects to be determined experimentally.
4.2 Known substitutions

One of the table columns is “substitutions” – other amino acid types seen at the same position in the alignment. These amino acid types may be interchangeable at that position in the protein, so if one wants to affect the protein by a point mutation, they should be avoided. For example, if the substitutions are “RVK” and the original protein has an R at that position, it is advisable to try anything, but RVK. Conversely, when looking for substitutions which will not affect the protein, one may try replacing, R with K, or (perhaps more surprisingly), with V. The percentage of times the substitution appears in the alignment is given in the immediately following bracket. No percentage is given in the cases when it is smaller than 1%. This is meant to be a rough guide - due to rounding errors these percentages often do not add up to 100%.

4.3 Surface

To detect candidates for novel functional interfaces, first we look for residues that are solvent accessible (according to DSSP program) by at least 10 Å², which is roughly the area needed for one water molecule to come in the contact with the residue. Furthermore, we require that these residues form a “cluster” of residues which have neighbor within 5 Å from any of their heavy atoms.

Note, however, that, if our picture of protein evolution is correct, the neighboring residues which are not surface accessible might be equally important in maintaining the interaction specificity - they should not be automatically dropped from consideration when choosing the set for mutagenesis. (Especially if they form a cluster with the surface residues.)

4.4 Number of contacts

Another column worth noting is denoted “noc/bb”; it tells the number of contacts heavy atoms of the residue in question make across the interface, as well as how many of them are realized through the backbone atoms (if all or most contacts are through the backbone, mutation presumably won’t have strong impact). Two heavy atoms are considered to be “in contact” if their centers are closer than 5 Å.

4.5 Annotation

If the residue annotation is available (either from the pdb file or from other sources), another column, with the header “annotation” appears. Annotations carried over from PDB are the following: site (indicating existence of related site record in PDB), S-S (disulfide bond forming residue), hb (hydrogen bond forming residue), jb (james bond forming residue), and sb (salt bridge forming residue).

4.6 Mutation suggestions

Mutation suggestions are completely heuristic and based on complementarity with the substitutions found in the alignment. Note that they are meant to be disruptive to the interaction of the protein with its ligand. The attempt is made to complement the following properties: small [AVGSTC], medium [LPNQDEMHIK], large [WFYHR], hydrophobic [LPVAMWF1], polar [GTCY]; positively [KHR], or negatively [DE] charged, aromatic [WFYH], long aliphatic chain [EKQRQ], OH-group possession [SDETY], and NH2 group possession [NQRK]. The suggestions are listed according to how different they appear to be from the original amino acid, and they are grouped in round brackets if they appear equally disruptive. From left to right, each bracketed group of amino acid types resembles more strongly the original (i.e. is, presumably, less disruptive) These suggestions are tentative - they might prove disruptive to the fold rather than to the interaction. Many researcher will choose, however, the straightforward alanine mutations, especially in the beginning stages of their investigation.

5 APPENDIX

5.1 File formats

Files with extension “ranks_sorted” are the actual trace results. The fields in the table in this file:

- alignment# number of the position in the alignment
- residue# residue number in the PDB file
- type amino acid type
- rank rank of the position according to older version of ET
- variability has two subfields:
 1. number of different amino acids appearing in in this column of the alignment
 2. their type
- rho ET score - the smaller this value, the lesser variability of this position across the branches of the tree (and, presumably, the greater the importance for the protein)
- cvg coverage - percentage of the residues on the structure which have this rho or smaller
- gaps percentage of gaps in this column

5.2 Color schemes used

The following color scheme is used in figures with residues colored by cluster size: black is a single-residue cluster; clusters composed of more than one residue colored according to this hierarchy (ordered by descending size): red, blue, yellow, green, purple, azure, turquoise, brown, coral, magenta, LightSalmon, SkyBlue, violet, gold, bisque, Light SlateBlue, orchid, RosyBrown, MediumAquamarine, DarkOliveGreen, CornflowerBlue, grey55, burlywood, LimeGreen, tan, DarkOrange, DeepPink, maroon, BlanchedAlmond.

The colors used to distinguish the residues by the estimated evolutionary pressure they experience can be seen in Fig. 10.
5.3 Credits

5.3.1 Alistat
Alistat reads a multiple sequence alignment from the file and shows a number of simple statistics about it. These statistics include the format, the number of sequences, the total number of residues, the average and range of the sequence lengths, and the alignment length (e.g. including gap characters). Also shown are some percent identities. A percent pairwise identity is defined as (idents / MIN(len1, len2)) where idents is the number of exact identities and len1, len2 are the unaligned lengths of the two sequences. The "average percent identity", "most related pair", and "most unrelated pair" of the alignment are the average, maximum, and minimum of all (N)(N-1)/2 pairs, respectively. The "most distant seq" is calculated by finding the maximum pairwise identity (best relative) for all N sequences, then finding the minimum of these N numbers (hence, the most outlying sequence). alistat is copyrighted by HHMI/Washington University School of Medicine, 1992-2001, and freely distributed under the GNU General Public License.

5.3.2 CE
To map ligand binding sites from different source structures, report_maker uses the CE program:

5.3.3 DSSP
In this work a residue is considered solvent accessible if the DSSP program finds it exposed to water by at least 10Å², which is roughly the area needed for one water molecule to come in contact with the residue. DSSP is copyrighted by W. Kabsch, C. Sander and MPI-MF, 1983, 1985, 1988, 1994 1995, CMBI version which is roughly the area needed for one water molecule to come in contact with the residue. DSSP is copyrighted by W. Kabsch, C. Sander and MPI-MF, 1983, 1985, 1988, 1994 1995, CMBI version by Elmar.Krieger@.cmbi.kun.nl November 18,2002,

5.3.4 HSSP
http://swift.cmbi.kun.nl/swift/hssp/

5.3.5 LaTeX
The text for this report was processed using LATEX; Leslie Lamport. “LaTeX: A Document Preparation System Addison-Wesley,” Reading, Mass. (1986).

5.3.6 Muscle
http://www.drive5.com/muscle/

5.3.7 Pymol
The figures in this report were produced using Pymol. The scripts can be found in the attachment. Pymol is an open-source application copyrighted by DeLano Scientific LLC (2005). For more information about Pymol see http://pymol.sourceforge.net/. (Note for Windows users: the attached package needs to be unzipped for Pymol to read the scripts and launch the viewer.)

5.4 Note about ET Viewer
Dan Morgan from the Lichtarge lab has developed a visualization tool specifically for viewing trace results. If you are interested, please visit:
http://mammoth.bcm.tmc.edu/traceview/
The viewer is self-unpacking and self-installing. Input files to be used with ETV (extension .etvx) can be found in the attachment to the main report.

5.5 Citing this work

5.6 About report_maker
report_maker was written in 2006 by Ivana Mihailek. The 1D ranking visualization program was written by Ivica Reš. report_maker is copyrighted by Lichtarge Lab, Baylor College of Medicine, Houston.

5.7 Attachments
The following files should accompany this report:

- 1a9bA.complex.pdb - coordinates of 1a9bA with all of its interacting partners
- 1a9bA.etvx - ET viewer input file for 1a9bA
- 1a9bA.cluster_report.summary - Cluster report summary for 1a9bA
- 1a9bA.ranks - Ranks file in sequence order for 1a9bA
- 1a9bA.clusters - Cluster descriptions for 1a9bA
- 1a9bA.msf - the multiple sequence alignment used for the chain 1a9bA
- 1a9bA.descr - description of sequences used in 1a9bA msf
- 1a9bA.ranks_sorted - full listing of residues and their ranking for 1a9bA
- 1a9bE.complex.pdb - coordinates of 1a9bE with all of its interacting partners
- 1a9bE.etvx - ET viewer input file for 1a9bE
- 1a9bE.cluster_report.summary - Cluster report summary for 1a9bE
- 1a9bE.ranks - Ranks file in sequence order for 1a9bE
- 1a9bE.clusters - Cluster descriptions for 1a9bE
- 1a9bE.msf - the multiple sequence alignment used for the chain 1a9bE
- 1a9bE.descr - description of sequences used in 1a9bE msf
- 1a9bE.ranks_sorted - full listing of residues and their ranking for 1a9bE
- 1a9bE.1a9bD.if.pml - Pymol script for Figure 8
- 1a9bE.cbcvg - used by other 1a9bE – related pymol scripts